Светодиодный куб программирование. Светодиодный куб. Подключаем источник питания для Arduino

14 января 2016 в 13:42

Светодиодный куб 8х8х8, интересно и красиво

  • Схемотехника

Введение

Идея эта в голову пришла спонтанно, до осени этого года я и догадываться не мог, что люди занимаются чем-то подобным в жизни. На самом деле про то, что такие «кубики» существуют, рассказал преподаватель схемотехники и предложил взять данную тему в качестве курсового.

Забегая вперёд, хочется сказать о том, что не нужно думать об объёме работы как о чём-то колоссальном. Напротив, делать совсем пришлось совсем немного, а вот те, кто думают: " Ха, я сделаю это за пару дней", - приготовьтесь к обратному. Да и сам процесс вовлекает в работу не хуже написания какого-нибудь программного кода…

Наблюдая за маленькими работами, размером 3х3х3, и 4х4х4, и 5х5х5, я потихоньку понимал, что чем больше - тем лучше.

Milestone #1:

Если вы до этого не работали с паяльником, для начала осознайте что нужно будет припайвать все ножки светодиодов, это 2*512, не так-то мало. Поэтому потренируйтесь на каких-нибудь кошках.


В интернете полно инструкций на эту тему. Но от начала до конца я увидел кажется только на instructables.com, и сразу скажу, как-то там слишком подробно в плане всего. Использовал лично я компонентов в раза два меньше. Естественно комплектация получилась попроще. В итоге для нашей маленькой игрушки нам понадобится:

512 светодиодов (6$ - aliexp)
- 5 специальных микросхем для светодиодов STP16CPS05MTR (9$ - aliexp)
такие детали выгоднее брать партиями естественно
- 8 BD136 pnp транзисторов (отечественные аналоги также подойдут)
- 5 1кОм резисторов (рабочая мощность 2 W)
- 5 10мкФ конденсаторов (рабочее напряжение 35-50 V)
- соединительные провода (около 10 м вышло, учитывая неудачи), припой и все, кто по-кайфу

Время приступить к изготовлению макета

Берем дрель, линейку, делаем сеточку 8х8 (главное не сделайте 8х9, как я) на чём угодно, будь то пенопласт, деревянная доска или что-то ещё. И аккуратно сверлим дырочки для светодиодов.

Milestone #2:

Ключевое слово - «аккуратно», пару миллиметров влево или вправо, и у вас уже будет кривой куб в итоге.


После того, как этот шаг выполнен, вставляем светодиоды в ячейки и соблюдаем следующее правило:

А) Все аноды должны быть слева, а катоды справа. Или наоборот. Как вам удобнее.
б) Самый первый ряд сверху должен содержать светодиоды под углом:

По такому принципу соединяем катоды (-). Там, где отмечено пунктиром - прикрепите какую нибудь проволоку, чтобы слой держался с двух сторон крепко.

Держа эту нежную прослоечку, вам может показаться, что она вот-вот может развалиться, но на самом деле, когда вы начнёте скреплять слои, потом эту конструкцию можно будет спокойно бросать на пол, и скорее всего ничего не развалится.

Итог первого слоя


Перед тем, как начинать припаивать второй слой, нужно взять и загнуть все аноды следующим образом:

Соединяем несколько слоёв


Milestone #3:

Новички, пожалуйста, используйте специальную паяльную пасту (флюс), если бы имеете дело с проводами, таким образом сохраните себе очень много нервов (не то, что я в первый раз).

Когда ты немножко устал


Итак, припаяв 64 провода к анодам, которые у нас получились «на дне», можно приступать к самой электронной схеме.

Видим, что выходы наших микросхем по обе стороны переходят в общие аноды колонок куба, а в 5-ой мы мультиплексируем через транзисторы управление слоями. Вроде бы все не сложно: подаётся сигнал на определённые колонки и слои, и мы получаем пару светящихся светодиодов.

На деле это работает так:

Имеется 3 входа: тактирование, данные и защёлка. Когда отработалось 8 битов, идет защелка, и данные помещаются в регистр. Т.к. у нас микросхемы выполнены на сдвиговых регистрах, то для того, чтобы отрендерить 1 раз наш кубик разными битами информации, нам нужно записать 1 байт (8 битов с номерами слоев, на которые подавать напряжение), далее будут идти пустые данные, т.к. для пятого чипа у нас левые пины ни к чему не подсоединены. Далее мы записываем по 1 байту для каждой из группы из восьми колонок. Соответствующий бит будет определять, которая колонка должна гореть, и где это пересекается с активированным слоем, светодиод на их пересечении и должен получить напряжение.

Ниже представлена схема из даташита разработчика для общего ознакомления:

Как мы будем записывать 1 байт данных:

Void CUBE::send_data(char byte_to_send){ for(int i = 0; i < 8; i++){ if(byte_to_send & 0x01< Использовал Arduino UNO (взял попользоваться), но здесь подойдет вообще любая модель. И nano, и mini, поскольку используются только 3 цифровых входа и vcc + gnd.

Отдельно позаботьтесь о блоке дополнительного питания (я использовал адаптер 12V 2A), для отображения всех слоев кажется ток именно такой силы и нужен.

Весь исходный код в виде скетча для Arduino будет

Куб описанный на этой странице использует 5 х 5 х 5 матрицу с одним цветом светодиода. Это хороший размер для эксперимента, но количество светодиодов требуется 125, что ведет к увеличению расходов. Мощность - до 1 амп ток и 5В напряжение т.е. 5Вт (арифметика простая).

Весь куб обновляется каждые 10МС (100Гц). Это не приводит к никаким видимым мерцаниям.

Каждый из светодиодных слоев расположены в 5 х 5 матрице и контролируются транзисторами подключенных к светодиодным анодам. При соответствующем контроля слоя из ПОС выходит высокий уровень базы транзистора, +5 V и эмиттер находится около 0,7 вольт. Транзисторы используются BC637 NPN , если альтернативные используется должны быть аналогичной спецификации.

Катоды из светодиодов подключены к IC2 И IC3. Эти STP16CP05 16-бит постоянного тока драйвер для светодиодов. В 680R Резистор дает светодиодный ток ~ 28mA;номинал этого резистора может быть изменен для установки различных светодиодов (у разных светодиодов разные номинальные данные).

Один слой куба:

Одна колонка светодиодов в кубе:

Конденсаторы обеспечивают электропитание... C4 и C5, в частности, являются важными и должны быть танталовые, расположенных рядом с ICs.

Что касается светодиодов можно использовать практически любые 5 мм или 3 мм светодиоды, как Вы хотите.

По моему мнению кубик с 3 мм светодиоды они имеют большее пространство внутри куба, которое делает его визуально более красивее.


Рис. 3


Рис.4


Рис.5


Рис. 6


Рис.7


Рис. 9



Рис.10

Рис. 12

Рис 1. Анода должен быть согнут под углом 90 °.

Рис 2. Аноды соедините вместе, а катоды должны быть прпендикулярны анодам.

Рис 3. Использование 5 вольт питания и резистор (от 120 до 330 Ом), необходимо проверить и визуально убдится,что все спаяно правильно. Подайте "+" на анод, а "-" на катод и светодиод должен загорется. Сопротивление необходимо для ограничения тока! Не забудьте при проверке!

Внимание. Если вы пропустите этот тест и получите светодиоды собраны в кубе, найти светодиод не рабочий, будет очень трудно!

Рис 4,5,6. Установка светодиодов в следующей строке и припаять их аноды вместе.

Рис 7. Продолжить установку светодиодов в каждой из строк, пайки и тестирование, как вы идете.

Рис 8. Со всеми пятью рядами завершили, припаять провода во всех строках провести слоем в форму. Этот провод служит также электрические соединения. Обратите внимание, каким проводам идет над и под светодиод анода приводит.

Повторите предыдущие шаги для каждого из пяти слоев.

Рисунок 9-12. Эти фотографии показывают общее расположение светодиодов куб.

В проекте предложена конструкция светодиодного куба (LED cube) 4x4x4 стоимостью около 15 долларов.

В кубе использовано 64 зеленых светодиода, которые формируют 4 слоя и 16 колонок. Управление кубом реализуется на базе Arduino. Приведен пример программы для Arduino Uno, в которой реализовано управление каждым отдельным светодиодом из всего массива.

Необходимые детали для проекта

  • 64 светодиода
  • 4 резистора на 100 Ом
  • Коннекторы для распайки
  • Проводники
  • Макетная плата для распайки
  • Коробка
  • Источник питания на 9 В
  • Arduino Uno

Инструменты, которые могут вам пригодиться, приведены на фото ниже.

Формируем основу светодиодного куба

Можете воспользоваться эскизом, который приведен . Распечатайте его и наклейте на картонную коробку. При печати проверьте, чтобы был выставлен фактический размер и горизонтальная ориентация. Карандашом сделайте отверстия в узловых точках. Проверьте, хорошо ли садятся светодиоды в подготовленные отверстия.

Собираем светодиодный куб

Возьмите 64 светодиода и проверьте их работоспособность, подключив каждый к пальчиковой батарейке. Это, конечно, скучная процедура, но она необходима. Иначе из-за одного нерабочего светодиода впоследствии может быть куча проблем. Установите 16 светодиодов в отверстия в соответствии со стрелками на распечатке. Красные стрелки соответствуют плюсу (анод), синие - минусу (катод). Все аноды соедините между собой. После этого переверните коробку и вытолкните светодиоды. Выталкивайте аккуратно, чтобы не повредить собранный слой. Все. Первый слой готов. Аналогичным образом формируем еще три слоя. После соединяем четыре получившихся слоя с помощью свободных катодов. Советую соединять контакты начиная с центра и перемещаясь к периферии. Светодиодный куб начинает принимать необходимые очертания!

Установка светодиодного куба

Сделайте разметку на макетной плате с помощью маркера. Учтите, что размеченный прямоугольник должен быть немного меньше коробки, на которой будет установлен ваш куб. После разметки сделайте небольшой паз вдоль линии будущей грани и аккуратно отломайте ребра макетной платы. Сделайте 20 отверстий на верхней части вашей коробки для куба. Можно разметить места для сверления по соответсвующим отверстиям макетной платы.

Подключаем светодиодный куб

Сначала разделите вашу рейку коннекторов на три части таким образом, чтобы они подошли к цифровым и аналоговым пинам Arduino Uno. Зачистите и установите на вашей маетной плате в коробке 16 проводов для цифровых входов (рядов). 4 провода от аналоговых входов подключите с использованием резисторов на 100 Ом. Теперь переходите к подключению концов проводов к трем рейкам коннекторов. Подключение реализовано таким образом, что есть возможность управлять светодиодами вдоль трех осей. Колонки соответсвуют осям X и Y. Плюс к этому, благодаря четырем слоям мы получаем координату Z. Если вы посмотрите вниз с угла светодиодного куба, первый квадрант будет соответствовать обозначению (1, 1). Таким образом, каждый светодиод может быть инициализирован по подобной же методике. Давайте рассмотрим пример. Посмотрите на рисунок выше и найдите светодиод A(1,4). "A" означает, что это один и первых слоев, а "(1,4)" соответсвтует координатам X=1, Y=4.

Схема подключения

Ряды/колонки

Слои

[Пины для слоев]

Подключаем источник питания для Arduino

Для питания платы можно использовать отдельный адаптер на 9 вольт, 1 ампер. Можно использовать переходник для батарейки типа крона и питать от нее. В любом случае, вам понадобится сделать еще одно отверстие для провода питания. Когда будете делать отверстие, предусмотрите его размер немного большим, чем сам коннектор.

В общем то все, что вам после этого останется - загрузить скетч на Arduino и наслаждаться результатом:

Ваш куб готов!

Видео собранного светодиодного куба 4x4x4


Весь комплект был изначально плотно обёрнут в несколько слоёв поролона - с этим всё хорошо. Отложив стенки акрилового корпуса, в пакете с остальными компонентами увидел вложенную бумажку со ссылкой на инструкцию по сборке куба.



6. Выводы, мысли и идеи


Сборка этого куба - занятие не для слабонервных. Потребуется много усердия и терпения, чтобы его построить. На сборку я потратил два дня: один световой день у меня ушёл только лишь на формирование светодиодных сеток, и 5-6 часов следующего дня - уже на сборку всего остального. Очень хотелось поскорее его собрать.
Мои впечатления о нём в целом положительные, поскольку это не просто игрушка, а уже дорабатываемый девайс, который предлагает реальный простор для творчества благодаря поддержке Ардуино. Для меня это также возможность наглядно отточить навыки работы с массивами, без которых в серьёзных проектах уже никак не обойтись. Это различные операции, например как кольцевой сдвиг определённого диапазона элементов массива в указанную сторону, который часто применяется в навесных дисплеях для вывода бегущей строки.
Однако нашлась кучка моментов, которые мне не понравились - это реализация анализа музыкального спектра , самая лишняя и ненужная вещь здесь, но это на мой взгляд. У вас может быть иное мнение.
Функционал пульта ДУ не задействован на 100%, всего четыре рабочие кнопки - не густо.
Хотя плюсик тут есть - это возможность выключить нижнюю подсветку из экономных или эстетических соображений, т.к. у кого-то она может вызвать ощущение «китайской игрушечности». Если берёте самую дешёвую версию куба с поддержкой Ардуино и без пульта, то скорее всего отключить нижнюю подсветку уже не получится, но и тут есть выход - светодиоды можно просто выпаять потом, коснувшись толстым жалом паяльника сразу обоих выводов светодиода.
Однако задействовать все кнопки пульта вполне реально, если написать соответствующий код для Ардуино, подключив уже к нему инфракрасный приёмник и тогда можно будет, используя пронумерованные клавиши, переключаться между своими анимациями или выводом данных, например между курсами валют, температурой и временем. Правда тут уже без ESP8266 не обойтись. В общем, сам факт возможности вывода полезной информации посредством Ардуино делает куб весьма интересным для исследования и реализации полезных его свойств.

Идея эта в голову пришла спонтанно, до осени этого года я и догадываться не мог, что люди занимаются чем-то подобным в жизни. На самом деле про то, что такие «кубики» существуют, рассказал преподаватель схемотехники и предложил взять данную тему в качестве курсового.

Забегая вперёд, хочется сказать о том, что не нужно думать об объёме работы как о чём-то колоссальном. Напротив, делать совсем пришлось совсем немного, а вот те, кто думают: " Ха, я сделаю это за пару дней", - приготовьтесь к обратному. Да и сам процесс вовлекает в работу не хуже написания какого-нибудь программного кода…

Наблюдая за маленькими работами, размером 3х3х3, и 4х4х4, и 5х5х5, я потихоньку понимал, что чем больше - тем лучше.

Milestone #1:

Если вы до этого не работали с паяльником, для начала осознайте что нужно будет припайвать все ножки светодиодов, это 2*512, не так-то мало. Поэтому потренируйтесь на каких-нибудь кошках.


В интернете полно инструкций на эту тему. Но от начала до конца я увидел кажется только на instructables.com, и сразу скажу, как-то там слишком подробно в плане всего. Использовал лично я компонентов в раза два меньше. Естественно комплектация получилась попроще. В итоге для нашей маленькой игрушки нам понадобится:

512 светодиодов (6$ - aliexp)
- 5 специальных микросхем для светодиодов STP16CPS05MTR (9$ - aliexp)
такие детали выгоднее брать партиями естественно
- 8 BD136 pnp транзисторов (отечественные аналоги также подойдут)
- 5 1кОм резисторов (рабочая мощность 2 W)
- 5 10мкФ конденсаторов (рабочее напряжение 35-50 V)
- соединительные провода (около 10 м вышло, учитывая неудачи), припой и все, кто по-кайфу

Время приступить к изготовлению макета

Берем дрель, линейку, делаем сеточку 8х8 (главное не сделайте 8х9, как я) на чём угодно, будь то пенопласт, деревянная доска или что-то ещё. И аккуратно сверлим дырочки для светодиодов.

Milestone #2:

Ключевое слово - «аккуратно», пару миллиметров влево или вправо, и у вас уже будет кривой куб в итоге.


После того, как этот шаг выполнен, вставляем светодиоды в ячейки и соблюдаем следующее правило:

А) Все аноды должны быть слева, а катоды справа. Или наоборот. Как вам удобнее.
б) Самый первый ряд сверху должен содержать светодиоды под углом:

По такому принципу соединяем катоды (-). Там, где отмечено пунктиром - прикрепите какую нибудь проволоку, чтобы слой держался с двух сторон крепко.

Держа эту нежную прослоечку, вам может показаться, что она вот-вот может развалиться, но на самом деле, когда вы начнёте скреплять слои, потом эту конструкцию можно будет спокойно бросать на пол, и скорее всего ничего не развалится.

Итог первого слоя


Перед тем, как начинать припаивать второй слой, нужно взять и загнуть все аноды следующим образом:

Соединяем несколько слоёв


Milestone #3:

Новички, пожалуйста, используйте специальную паяльную пасту (флюс), если бы имеете дело с проводами, таким образом сохраните себе очень много нервов (не то, что я в первый раз).

Когда ты немножко устал


Итак, припаяв 64 провода к анодам, которые у нас получились «на дне», можно приступать к самой электронной схеме.

Видим, что выходы наших микросхем по обе стороны переходят в общие аноды колонок куба, а в 5-ой мы мультиплексируем через транзисторы управление слоями. Вроде бы все не сложно: подаётся сигнал на определённые колонки и слои, и мы получаем пару светящихся светодиодов.

На деле это работает так:

Имеется 3 входа: тактирование, данные и защёлка. Когда отработалось 8 битов, идет защелка, и данные помещаются в регистр. Т.к. у нас микросхемы выполнены на сдвиговых регистрах, то для того, чтобы отрендерить 1 раз наш кубик разными битами информации, нам нужно записать 1 байт (8 битов с номерами слоев, на которые подавать напряжение), далее будут идти пустые данные, т.к. для пятого чипа у нас левые пины ни к чему не подсоединены. Далее мы записываем по 1 байту для каждой из группы из восьми колонок. Соответствующий бит будет определять, которая колонка должна гореть, и где это пересекается с активированным слоем, светодиод на их пересечении и должен получить напряжение.

Ниже представлена схема из даташита разработчика для общего ознакомления:

Как мы будем записывать 1 байт данных:

Void CUBE::send_data(char byte_to_send){ for(int i = 0; i < 8; i++){ if(byte_to_send & 0x01< Использовал Arduino UNO (взял попользоваться), но здесь подойдет вообще любая модель. И nano, и mini, поскольку используются только 3 цифровых входа и vcc + gnd.

Отдельно позаботьтесь о блоке дополнительного питания (я использовал адаптер 12V 2A), для отображения всех слоев кажется ток именно такой силы и нужен.

Весь исходный код в виде скетча для Arduino будет



Поделиться