Какая марка трубы используется на трубопроводе пара. Какой толщины выбрать стальную трубу. Принцип действия котла

Потери энергии при движении жидкости по трубам определяются ре­жимом движения и характером внутренней поверхности труб. Свойства жидкости или газа учитываются в расчете с помощью их параметров: плотности р и кинематической вязкости v. Сами же формулы, использу­емые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара. При расчете газопроводов плотность газа определяют в зависимости от давления по уравнению состояния, написанному для идеальных газов, и лишь при высоких давлениях (больше примерно 1,5 МПа) вводят в уравнение поправочный коэффи­циент, учитывающий отклонение поведения реальных газов от поведе­ния идеальных газов.

При использовании законов идеальных газов для расчета трубопро­водов, по которым движется насыщенный пар, получаются значительные ошибки. Законы идеальных газов можно использовать лишь для сильно перегретого пара. При расчете паропроводов плотность пара определя­ют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются по­терями давления на участке, по среднему давлению определяют плот­ность пара и далее рассчитывают действительные потери давления. Ес­ли ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, ис­пользующими пар. Методику расчета паропроводов рассмотрим на при­мере.

ТАБЛИЦА 7.6. РАСЧЕТ ЭКВИВАЛЕНТНЫХ ДЛИН (Аэ=0,0005 м)

№ участка на рис. 7.4

Местные сопротивления

Коэффициент мест­ного сопротивления С

Эквивалентная дли­на 1э, м

Задвижка

Задвижка

Сальниковые компенсаторы (4 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Сальниковые компенсаторы (2 шт.)

0,5 0,3-2=0,бі

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (2 шт)

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (1 шт)

6,61 кг/м3.

(3 шт.)................................... *........................................................ 2,8-3 = 8,4

Тройник при разделении потока (проход) . . ._________________ 1__________

Значение эквивалентной длины при 2£ = 1 при k3 = 0,0002 м для трубы диамет­ром 325X8 мм по табл. 7.2 /э=17,6 м, следовательно, суммарная эквивалентная дли­на для участка 1-2: /э = 9,9-17,6= 174 м.

Приведенная длина участка 1-2: /пр і-2=500+174=674 м.

Источником тепла называется комплекс оборудования и устройств, с помощью которых осуществляется преобразование природных и искусственных видов энергии в тепловую энергию с требуемыми для потребителей параметрами. Потенциальные запасы основных природных видов …

В результате гидравлического расчета тепловой сети определяют диаметры всех участков теплопроводов, оборудования и запорно-регули - рующей арматуры, а также потери давления теплоносителя на всех эле­ментах сети. По полученным значениям потерь …

В системах теплоснабжения внутренняя коррозия трубопроводов и оборудования приводит к сокращению срока их службы, авариям и зашламлению воды продуктами коррозии, поэтому необходимо пре­дусматривать меры борьбы с ней. Сложнее обстоит дело …

И мн. др. Паропроводы служат для передачи пара от места получения или распределения к месту потребления пара (например, от паровых котлов к турбинам , от отборов турбины к технологическим потребителям, в отопительную систему и т. д.) Паропровод от парового котла к турбине на электростанциях называют "главным" паропроводом, или паропроводом "острого" пара.

Основными элементами паропровода являются стальные трубы , соединительные элементы (фланцы , отводы , колена, тройники), запорная и запорно-регулирующая арматура (задвижки , клапаны), дренажные устройства, компенсаторы теплового удлинения , опоры , подвески и крепления, тепловая изоляция .

Трассировка производится с учётом минимизации потерь энергии из-за аэродинамического сопротивления парового тракта. Соединение элементов паропроводов производится сваркой . Фланцы допускаются только для соединения паропроводов с арматурой и оборудованием .

Во избежание потерь энергии на паропроводах устанавливают минимум запорно-регулирующей арматуры. На главных паропроводах электростанций устанавливают стопорные и регулирующие клапаны, которые являются основными средствами включения и регулирования мощности турбины.

Толщина стенки паропровода по условию прочности должна быть не менее : где

P - расчетное давление пара, D - наружный диаметр паропровода, φ - расчетный коэффициент прочности с учётом сварных швов и ослабления сечения, σ - допускаемое напряжение в металле паропровода при расчетной температуре пара.

Опоры и подвески паропроводов устраивают подвижными и неподвижными. Между соседними неподвижными опорами на прямом участке устанавливают лирообразные или П-образные компенсаторы], которые снижают последствия деформации паропровода под воздействием нагрева (1 паропровода удлиняется в среднем на 1,2 мм при нагреве на 100).

Для уменьшения попадания капель конденсата в паровые двигатели (особенно в турбины) паропроводы устанавливают с уклоном и снабжают т.н. "конденсационными горшками", которые улавливают конденсат, образующийся в трубах, а также устанавливают различные сепарационные устройства в паровом тракте.

Горизонтальные участки трубопровода должны иметь уклон не менее 0,004.

Все элементы трубопроводов с температурой наружной поверхности стенки выше 55 °C, расположенные в доступных для обслуживающего персонала местах, должны быть покрыты тепловой изоляцией. Тепловая изоляция сокращает также потери тепла в атмосферу. Поскольку при высокой температуре у стали проявляется ползучесть (крип), для контроля за деформациями паропроводов к поверхности привариваются бобышки. Эти места должны иметь съёмную изоляцию. Изоляцию паропроводов покрывают, как правило, жестяными или алюминиевыми кожухами.

Паропроводы являются опасным производственным объектом и должны быть зарегистрированы в специализированных регистрирующих и надзорных органах (в России - территориальном управлении Ростехнадзора). Разрешение на эксплуатацию вновь смонтированных паропроводов выдается после их регистрации и технического освидетельствования . Во время эксплуатации периодически производится техническое освидетельствование и гидравлические испытания паропроводов.

Литература

  • ПБ 10-573-03 Правила устройства и безопасности эксплуатации трубопроводов пара и горячей воды. Утверждены постановлением Госгортехнадзора РФ от 11.06.2003 № 90.
  • НП-045-03 Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды для объектов использования атомной энергии. Утверждены постановлениями Госатомнадзора № 3, Госгортехнадзора № 100 от 19.06.2003.
  • Пособие по расчету на прочность технологических стальных трубопроводов на P у до 10 МПа. М.:ЦИТП, 1989.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Паропровод" в других словарях:

    Паропровод … Орфографический словарь-справочник

    паропровод - (не рекомендуется паропровод) … Словарь трудностей произношения и ударения в современном русском языке

    ПАРОПРОВОД, паропровода, муж. (тех.). Трубопровод, по которому проходит пар. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    - (Steam conduit) трубопровод, проводящий пар к машинам и вспомогательным механизмам. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    Сущ., кол во синонимов: 5 воздухопровод (5) газовоздухопровод (6) … Словарь синонимов

    паропровод - Трубопровод с запорной и регулирующей аппаратурой для транспортирования пара [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики теплоэнергетика в целом EN steam conduitsteam line DE Dampfumformer FR conduite … Справочник технического переводчика

    Паропровод - – трубопровод с запорной и регулирующей аппаратурой для транспортирования пара. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Рубрика термина: Тепловое оборудование Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

    Трубопровод с запорной и регулирующей аппаратурой для транспортирования пара (Болгарский язык; Български) паропровод (Чешский язык; Čeština) parovod (Немецкий язык; Deutsch) Dampfumformer (Венгерский язык; Magyar) gőzvezeték (Монгольский язык)… … Строительный словарь

    паропровод - garo vamzdis statusas T sritis automatika atitikmenys: angl. steam pipe vok. Dampfleitung, f rus. паропровод, m pranc. tuyau à vapeur, m … Automatikos terminų žodynas

    паропровод - garotiekis statusas T sritis Energetika apibrėžtis Vamzdynas garui transportuoti. Garotiekis paprastai montuojamas iš plieninių trauktinių vamzdžių. Mažo slėgio (iki 1,2 MPa) garotiekis gali būti jungiamas jungėmis, vidutinio ir didelio slėgio –… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

При строительстве загородного дома важно провести все коммуникации, к которым относятся системы отопления, канализации и водоснабжения. При строительстве отдельной системы особое внимание уделяется выбору труб. Достаточно часто для трубопроводов выбираются стальные трубы, которые отличаются высокой устойчивостью к механическим воздействиям и возможностью выдерживать высокие температуры. Основными параметрами выбора являются толщина стальной трубы и ее диаметр.

Основные характеристики труб из стали

Трубы по способу изготовления подразделяются на следующие виды:

  • бесшовные;
  • электросварные.

Бесшовные трубы могут быть:

  • горячедеформированными. Изготовление таких труб производится из горячих заготовок методом прессования;
  • холоднодеформированными. Трубы такого вида после прохождения через пресс охлаждаются, и именно в таком виде производится их окончательное формирование.

Горячедеформированные трубы отличаются большей толщиной стенки, что придает изделиям дополнительную прочность.

Электросварные трубы также подразделяются на два основных вида:

  • спиралешовные;
  • прямошовные.

Трубы с прямым швом по своим техническим показателям практически не отличаются от бесшовных.

Перед изготовлением спиралешовных труб листы металла закручиваются. Такой способ производства позволяет достичь повышенной прочности труб на разрыв. Спиралешовные трубы используются преимущество для прокладки газопроводов и нефтепроводов в зонах с повышенной сейсмической активностью.

Основными характеристиками труб являются следующие параметры:

  • диаметр, который бывает внутренним, наружным, условным;
  • толщина стенки.

Все трубы изготавливаются в соответствии с требованиями ГОСТ и могут иметь следующие типовые размеры:

  • электросварные трубы (основной ГОСТ 10707-80) могут иметь диаметр до 110 мм и толщину стенки до 5 мм. Основные размеры труб и соответствующая толщина представлены в таблице;
Диаметр, мм Стенки толщина, мм
5 – 7 0,5 – 1,0
8, 9 0,5 – 1,2
10 0,5 – 1,5
11, 12 0,5 – 2,5
13 – 16 0,7 – 2,5
17 – 21 1,0 – 2,5
22 — 32 0,9 – 5,0
34 — 50 1,0 – 5,0
51 – 67 1,4 – 5
77 – 89 2,5 – 5
89 – 110 4 – 5
  • бесшовные трубы различных видов (основной ГОСТ 9567-75). Изготавливаемые типовые размеры представлены в таблице;
Горячедеформированные трубы Холоднодеформированные трубы
Диаметр, мм Стенки, мм Диаметр, мм Стенки, мм
25 – 50 2,5 – 8,0 4 0,2 – 1,2
54 — 76 3 – 8,0 5 0,2 – 1,5
83 – 102 3,5 – 8,0 6 – 9 0,2 – 2,5
108 – 133 4,0 – 8 10 — 12 0,2 – 3,5
140 – 159 4,5 – 8,0 12 – 40 0,2 – 5
168 – 194 5 – 8 42 – 60 0,3 – 9
203 – 219 6 – 8 63 – 70 0,5 – 12
245 – 273 6,5 – 8 73 – 100 0,8 – 12
299 – 325 7,5 – 8 102 – 240 1 – 4,5
250 – 500 1,5 – 4,5
530 – 600 2 – 4,5

Диаметры стальных труб чаще всего обозначаются миллиметрами, но на практике можно встретить трубы, характеристики которых представлены в дюймах.

Перевести дюймовый диаметр в миллиметровый (или обратно) можно при помощи .

Более подробно разобраться с соответствием дюймов и миллиметров для различных видов труб поможет видео.

Выбор труб для коммуникаций

Стальные трубы преимущественно используются для проведения систем отопления и водоснабжения. Чтобы самостоятельно определить наиболее подходящий диаметр того или иного трубопровода, необходимо знать технические характеристики трубопровода и формулу для расчета.

Подбор параметров труб для водоснабжения

Диаметр труб для водопровода или канализации определяется с учетом следующих параметров:

  1. длины трубопровода;
  2. пропускной способности;
  3. наличия поворотов в системе.

Определяющим фактором является пропускная способность, которую можно рассчитать по следующей математической формуле:

Определив пропускную способность, диаметр можно рассчитать по формуле или подобрать по таблице ниже.

Чтобы избежать сложности математических расчетов, можно воспользоваться рекомендациями специалистов:

  1. монтаж стояка системы должен обустраиваться трубами с диаметром не менее 25 мм;
  2. разводку водопроводных труб можно проводить трубами диаметром 15 мм.

Дополнительно при определении диаметра трубопровода можно ориентироваться на зависимость между длиной трубопровода и диаметром труб, которая выражается следующими характеристиками:

  • если общая длина менее 10 м, то подходят трубы диаметром 20 мм;
  • если длина трубопровода находится в пределах 10 – 30 м, то целесообразнее применять трубы с диаметром 25 мм;
  • при общей длине более 30 м рекомендуется использовать трубы, имеющие диаметр 32 мм.

Подбор параметров труб для отопления

При подборе труб для отопления необходимо предварительно определить следующие параметры:

  • разницу температур при входе в систему и выходе (обозначается Δtº);
  • скорость движения теплоносителя по системе (V);
  • количество тепла, требуемого для обогрева помещения определенной площади (Q).

Зная эти параметры, произвести расчет можно по математической формуле:

Чтобы не проводить сложные расчеты самостоятельно можно воспользоваться готовой таблицей для подбора диаметра трубы системы отопления (с инструкцией по ее использованию можно ознакомиться ).

При выборе диаметра важно учитывать, что подобранный при помощи расчетов или таблиц показатель не может быть менее диаметра выходного отверстия отопительного оборудования.

После определения оптимального диаметра трубопровода толщина стенки трубы определяется в соответствии с вышеуказанными таблицами. Для системы отопления достаточно толщины стальной трубы 0, 5 мм, а для системы водоснабжения 0,5 – 1, 5 мм в зависимости от условий прохождения трубопровода.

Диаметр паропровода определяется как:

Где: D – максимально потребляемое количество пара участком, кг/ч,

D= 1182,5 кг/ч (по графику работы машин и аппаратов для участка по производству творога) /68/;

- удельный объем насыщенного пара, м 3 /кг,
=0,84м 3 /кг;

- скорость движения пара в трубопроводе м/с, принимается 40м/с;

d =
=0,100 м=100 мм

К цеху подведен паропровод диаметром 100 мм, следовательно, его диаметра достаточно.

Паропроводы стальные, бесшовные, толщина стенки 2,5 мм

4.2.3. Расчет трубопровода для возврата конденсата

Диаметр трубопровода определяется по формуле:

d=
, м,

где Мк – количество конденсата, кг/ч;

Y – удельный объем конденсата, м 3 /кг, Y=0,00106 м 3 /кг;

W – скорость движения конденсата, м/с, W=1м/с.

Мк=0,6* D, кг/ч

Мк=0,6*1182,5=710 кг/ч

d=
=0,017м=17мм

Подбираем стандартный диаметр трубопровода dст=20мм.

4.2.3 Расчет изоляции тепловых сетей

С целью сокращения потерь тепловой энергии трубопроводы изолируют. Поведем расчет изоляции питающего паропровода с диаметром 110 мм.

Толщина изоляции для температуры окружающей среды 20ºС при заданной тепловой потере определяется по формуле:

, мм,

где d - диаметр неизолированного трубопровода, мм, d=100мм;

t - температура неизолированного трубопровода, ºС, t=180ºС;

λиз - коэффициент теплопроводности изоляции, Вт/м*К;

q- тепловые потери с одного погонного метра трубопровода, Вт/м.

q=0,151 кВт/м = 151 Вт/м²;

λиз=0,0696 Вт/м²*К.

В качестве изоляционного материала используется шлаковая вата.

=90 мм

Толщина изоляции не должна превышать 258 мм при диаметре труб 100 мм. Полученная δиз<258 мм.

Диаметр изолированного трубопровода составит d=200 мм.

4.2.5 Проверка экономии тепловых ресурсов

Тепловая энергия определяется по формуле:

t=180-20=160ºС

Рисунок 4.1 Схема трубопровода

Площадь трубопровода определяется по формуле:

R= 0,050 м, H= 1 м.

F=2*3,14*0,050*1=0,314м²

Коэффициент теплопередачи неизолированного трубопровода определяется по формуле:

,

где а 1 =1000 Вт/м²К, а 2 =8 Вт/м²К, λ=50 Вт/мК, δст=0,002м.

=7,93.

Q=7,93*0,314*160=398 Вт.

Коэффициент теплопроводности изолированного трубопрвода определяется по формуле:

,

где λиз=0,0696 Вт/мК.

=2,06

Площадь изолированного трубопровода определяется по формуле F=2*3,14*0,1*1=0,628м²

Q=2,06*0,628*160=206Вт.

Выполненные расчеты показали, что при использовании изоляции на паровом трубопроводе толщиной 90 мм экономиться 232 Вт тепловой энергии с 1 м трубопровода, то есть тепловая энергия расходуется рационально.

4.3 Электроснабжение

На заводе основными потребителями электроэнергии являются:

Электролампы (осветительная нагрузка);

Электроснабжение на предприятии от городской сети через трансформаторную подстанцию.

Система электроснабжения – трехфазный ток с промышленной частотой 50 Гц. Напряжение внутренней сети 380/220 В.

Расход энергии:

В час пиковой нагрузки – 750 кВт/ч;

Основные потребители энергии:

Технологическое оборудование;

Силовые установки;

Система освещения предприятия.

Распределительная сеть 380/220В от распределительных шкафов до машинных пускателей выполнена кабелем марки ЛВВР в стальных трубах, к двигательным проводам ЛВП. В качестве заземления используется нулевой провод питающей сети.

Предусматривается общее (рабочее и аварийное) и местное (ремонтное и аварийное) освещение. Местное освещение питается от понижающих трансформаторов малой мощности при напряжении 24В. Нормальное аварийное освещение питается от электрической сети на напряжении 220В. При полном исчезновении напряжении на шинах подстанции аварийное освещение питается от автономных источников («сухих аккумуляторов»), встроенных в светильники или от АГП.

Рабочее (общее) освещение предусматривается на напряжении 220В.

Светильники предусматриваются в исполнении, соответствующим характеру производства и условиям среды помещений, в которых они устанавливаются. В производственных помещениях предусматриваются с люминистцентными лампами, устанавливаемые на комплектных линиях из специальных подвесных коробов, располагаемых на высоте около 0,4м от пола.

Для эвакуационного освещения устанавливаются щитки аварийного освещения, подключаемые к другому (независимому) источнику освещения.

Производственное освещение осуществляется люминесцентными лампами и лампами накаливания.

Характеристики ламп накаливания, используемых для освещения производственных помещений:

1) 235- 240В 100Вт Цоколь Е27

2) 235- 240В 200Вт Цоколь Е27

3) 36В 60Вт Цоколь Е27

4) ЛСП 3902А 2*36 Р65ИЭК

Наименование светильников, используемых для освещения холодильных камер:

Cold Force 2*46WT26HF FO

Для уличного освещения используются:

1) RADBAY 1* 250 WHST E40

2) RADBAY SEALABLE 1* 250WT HIT/ HIE MT/ME E40

Обслуживание электросиловых и осветительных приборов осуществляется специальной службой предприятия.

4.3.1 Расчет нагрузки от технологического оборудования

Тип электродвигателя подбирается из каталога технологического оборудования.

Р ноп, КПД – паспортные данные электродвигателя, выбираются из электротехнических справочников /69/.

Р пр - присоединительная мощность

Р пр =Р ном /

Тип магнитного пускателя выбирается для каждого электродвигателя конкретно. Расчёт нагрузки от оборудования сведён в таблицу 4.4

4.3.2 Расчет осветительной нагрузки /69/

Аппаратный цех

Определим высоту подвеса светильников:

H р =Н 1 -h св -h р

Где: Н 1 - высота помещений, 4,8м;

h св - высота рабочей поверхности над полом, 0,8м;

h р - расчетная высота подвеса светильников, 1,2м.

H р =4,8-0,8-1,2=2,8м

Выбираем равномерную систему распределения светильников по углам прямоугольника.

Расстояние между светильниками:

L= (1,2÷1,4)·H р

L=1,3·2,8=3,64м

N св = S/L 2 (шт)

n св =1008/3,64м 2 =74 шт

Принимаем 74 светильника.

N л =n св ·N св

N л =73·2 = 146 шт

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*40/4,8*(24+40) = 3,125

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

Q=E min *S*k*Z/N л *η

к- коэффициент запаса, 1,5;

N л - число ламп, 146 шт.

Q=200*1,5*1008*1,1/146*0,5= 4340 лм

Выбираем лампу типа ЛД-80.

Творожный цех

Ориентировочное число осветительных ламп:

N св =S/L 2 (шт)

где: S- площадь освещенной поверхности, м 2 ;

L - расстояние между светильниками, м.

n св =864/3,64м 2 = 65,2 шт

Принимаем 66 светильников.

Определяем ориентировочное число ламп:

N л =n св ·N св

N св - количество ламп в светильнике

N л =66·2 = 132 шт

Определим коэффициент использования светового потока по таблице коэффициентов:

i=А*В/Н*(А+В)

где: А - длина, м;

В – ширина помещения, м.

i=24*36/4,8*(24+36) = 3

Принимаем коэффициенты отражения света:

От потолка-70%;

От стен -50%;

От рабочей поверхности-30%.

По индексу помещения и коэффициенту отражения выбираем коэффициент использования светового потока η=0,5

Определим световой поток одной лампы:

Q=E min *S*k*Z/N л *η

где: E min - минимальная освещённость, 200лк;

Z –коэффициент линейной освещённости 1,1;

к- коэффициент запаса, 1,5;

η – коэффициент использования светового потока, 0,5;

N л - число ламп, 238 шт.

Q=200*1,5*864*1,1/132*0,5 = 4356 лм

Выбираем лампу типа ЛД-80.

Цех по переработке сыворотки

n св =288/3,64 2 =21,73 шт

Принимаем 22 светильников.

Число ламп:

i=24*12/4,8*(24+12) =1,7

Световой поток одной лампы:

Q=200*1,5*288*1,1/56*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Приемное отделение

Ориентировочное число светильников:

n св =144/3,64м 2 =10,8 шт

Принимаем 12 светильников

Число ламп:

Коэффициент использования светового потока:

i=12*12/4,8*(12+12)=1,3

Световой поток одной лампы:

Q=150*1,5*144*1,1/22*0,5=3740 лк

Выбираем лампу типа ЛД-80.

Установлена мощность одной осветительной нагрузки Р=N 1 *Р л (Вт)

Расчет осветительной нагрузки по методу удельных мощностей.

E min =150 лк W*100=8,2 Вт/м 2

Пересчет на освещенность 150 лк осуществляется по формуле

W= W*100* E min /100, Вт/м 2

W= 8,2*150/100 = 12,2 Вт/м 2

Определение суммарной мощности, необходимой для освещения (Р), Вт.

Аппаратный цех Р= 12,2*1008= 11712 Вт

Творожный цех Р= 12,2*864= 10540 Вт

Приемное отделение Р=12,2*144= 1757 Вт

Цех переработки сыворотки Р= 12,2* 288= 3514 Вт

Определяем число мощностей N л = Р/Р 1

Р 1 – мощность одной лампы

N л (аппаратного цеха) = 11712 / 80= 146

N л (творожного цеха) = 10540 / 80= 132

N л (приемного отделения) = 1756/ 80= 22

N л (цеха переработки сыворотки) = 3514/80 = 44

146+132+22+44= 344; 344*80= 27520 Вт.

Таблица 4.5 – Расчет силовой нагрузки

Наименование оборудования

Тип, марка

Количество

Тип электродвигателя

Мощность

КПД электродвига-

Тип магнит-

ного пуска

Номинальная Р

Электрическая

Р

Смесител

Фасовочный автомат

Дозатор Я1-ДТ-1

Фасовочный автомат

Фасовочный автомат

Линия производства твор

Таблица 4.6 – Расчёт осветительной нагрузки

Наименование помещений

Мин. освеще

Тип лампы

Кол-во ламп

Элект-ричес-

ность кВт

Удельная мощ-ность, Вт/м 2

Приемное отделение

Творожный цех

Аппаратный цех

Цех по переработке сыворотки

4.3.3 Проверочный расчет силовых трансформаторов

Активная мощность: Р тр =Р мак /η сети

где: Р мак =144,85 кВт (по графику «Расход мощности по часам суток»)

η сети =0,9

Р тр =144,85/0,9=160,94 кВт

Полная мощность, S, кВ·А

S=Р тр /соsθ

S=160,94/0,8=201,18 кВ·А

Для трансформаторной подстанции ТМ-1000/10 полная мощность составляет 1000кВ·А, полная мощность при существующей на предприятии нагрузки составляет 750кВ·А, но с учетом технического переоснащения творожного участка и организации переработки сыворотки необходимая мощность должна составлять: 750+201,18=951,18 кВ·А < 1000кВ·А.

Расход электроэнергии на 1 т вырабатываемой продукции:

Р=

где М- масса всех вырабатываемых продуктов, т;

М=28,675 т

Р=462,46/28,675=16,13 кВт*ч/т

Таким образом, из графика расхода электроэнергии по часам суток видно, что наибольшая мощность требуется в промежутке времени с 8 00 до 11 00 и с 16до 21часов. В этот период времени происходит приемка и обработка поступающего молока-сырья, производство изделий, розлив напитков. Небольшие скачки наблюдаются в период с 8до 11 , когда идет большинство процессов обработки молока для получения продуктов.

4.3.4 Расчет сечений и выбор кабелей.

Сечение кабеля находят по потере напряжения

S=2 PL*100/γ*ζ*U 2 , где:

L – длина кабеля, м.

γ – удельная проводимость меди, ОМ * м.

ζ – допустимые потери напряжения,%

U- напряжение сети, В.

S= 2*107300*100*100 / 57,1*10 3 *5*380 2 =0,52 мм 2 .

Вывод: сечение используемого предприятием кабеля марки ВВР 1,5 мм 2 – следовательно, имеющийся кабель обеспечит участки электроэнергией.

Таблица 4.7 – Почасовой расход электроэнергии на выработку продуктов

Часы суток

Насос 50-1Ц7,1-31

Счетчик Взлет-ЭР

Охладитель

Насос Г2-ОПА

ППОУ ЦКРП-5-МСТ

Сепаратор-нормализатор ОСЦП-5

Счетчик-расходомер

Творогоизготовитель ТИ

Продолжение таблицы 4.7

Часы суток

Мембранный насос

Обезвоживатель

Стабилизатор

параметров

Насос П8-ОНБ-1

Автомат фасовочный SAN/T

Измельчитель-смеситель-250

Автомат фасовочный

Фарш мешалка

Продолжение таблицы 4.7

Часы суток

Сепаратор-

Осветлитель

Ванна ВДП

Насос-дозатор НРДМ

Установка

Ванна ВДП

Насос погружной Seepex

Трубчатый

пастеризатор

Продолжение таблицы 4.7

Часы суток

Автомат фасовочный

Приемное отделение

Аппаратный цех

Творожный цех

Цех переработки сыворотки

Окончание таблицы 4.7

Часы суток

Неучтенные потери 10%

График расхода электроэнергии.

  • Паропро́вод - трубопровод для транспортировки пара. Применяется на предприятиях, использующих пар в качестве технологического продукта или энергоносителя, например, на тепловых или атомных электростанциях, на заводах железобетонных изделий, в пищевой промышленности, в системах парового отопления и мн. др. Паропроводы служат для передачи пара от места получения или распределения к месту потребления пара (например, от паровых котлов к турбинам, от отборов турбины к технологическим потребителям, в отопительную систему и т. д.) Паропровод от парового котла к турбине на электростанциях называют "главным" паропроводом, или паропроводом "острого" пара.

    Основными элементами паропровода являются стальные трубы, соединительные элементы (фланцы, отводы, колена, тройники), запорная и запорно-регулирующая арматура (задвижки, клапаны), дренажные устройства, компенсаторы теплового удлинения, опоры, подвески и крепления, тепловая изоляция.

    Трассировка производится с учётом минимизации потерь энергии из-за аэродинамического сопротивления парового тракта. Соединение элементов паропроводов производится сваркой. Фланцы допускаются только для соединения паропроводов с арматурой и оборудованием.

    Во избежание потерь энергии на паропроводах устанавливают минимум запорно-регулирующей арматуры. На главных паропроводах электростанций устанавливают стопорные и регулирующие клапаны, которые являются основными средствами включения и регулирования мощности турбины.

    Толщина стенки паропровода по условию прочности должна быть не менее:

    {\displaystyle \delta ={\frac {PD}{2\varphi \sigma +P}},}

    P - расчетное давление пара,

    D - наружный диаметр паропровода,

    φ - расчетный коэффициент прочности с учётом сварных швов и ослабления сечения,

    σ - допускаемое напряжение в металле паропровода при расчетной температуре пара.

    Опоры и подвески паропроводов устраивают подвижными и неподвижными. Между соседними неподвижными опорами на прямом участке устанавливают лирообразные или П-образные компенсаторы], которые снижают последствия деформации паропровода под воздействием нагрева (1 м паропровода удлиняется в среднем на 1,2 мм при нагреве на 100°).

    Для уменьшения попадания капель конденсата в паровые двигатели (особенно в турбины) паропроводы устанавливают с уклоном и снабжают т.н. "конденсационными горшками", которые улавливают конденсат, образующийся в трубах, а также устанавливают различные сепарационные устройства в паровом тракте.

    Горизонтальные участки трубопровода должны иметь уклон не менее 0,004.

    Все элементы трубопроводов с температурой наружной поверхности стенки выше 55 °C, расположенные в доступных для обслуживающего персонала местах, должны быть покрыты тепловой изоляцией. Тепловая изоляция сокращает также потери тепла в атмосферу. Поскольку при высокой температуре у стали проявляется ползучесть (крип), для контроля за деформациями паропроводов к поверхности привариваются бобышки. Эти места должны иметь съёмную изоляцию. Изоляцию паропроводов покрывают, как правило, жестяными или алюминиевыми кожухами.

    Паропроводы являются техническим устройством расположенном на опасном производственном объекте и должны быть зарегистрированы в специализированных регистрирующих и надзорных органах (в России - территориальном управлении Ростехнадзора). Разрешение на эксплуатацию вновь смонтированных паропроводов выдается после их регистрации и технического освидетельствования. Во время эксплуатации периодически производится техническое освидетельствование и гидравлические испытания паропроводов.



Поделиться